
PROGRAMMING

Under construction…

IsoMax is a programming language based on Finite State Machine (FSM) concepts
applied to software, with a procedural language (derived from Forth) underneath it.
The closest description to the FSM construction type is a “One-Hot” Mealy type of
Timer Augmented Finite State Machines. More on these concepts will come later.

QUICK OVERVIEW

What is IsoMax™? IsoMax™ is a real time operating system / language.

How do you program in IsoMax™? You create state machines that can run in a virtually
parallel architecture.

Step Programming Action Syntax
1 Name a state machine

MACHINE <name>

2 Select this state

ON-MACHINE <name>

3 Name any states appended on the
machine

APPEND-STATE <name>
APPEND-STATE <name>
…

4 Describe transitions from states to states

IN-STATE
 <state>
CONDITION
 <Boolean>
CAUSES
 <action>
THEN-STATE
 <state>
TO-HAPPEN

5 Test and Install {as required}

What do you have to write to make a state machine in IsoMax™? You give a machine a
name, and then tell the system that’s the name you want to work on. You append any
number of states to the machine. You describe any number of transitions between
states. Then you test the machine and when satisfied, install it into the machine chain.

What is a transition? A transition is how a state machine changes states. What’s in a
transition? A transition has four components; 1) which state it starts in, 2) the condition
necessary to leave, 3) the action to take when the condition comes true, and 4) the state
to go to next time. Why are transitions so verbose? The structure makes the transitions
easy to read in human language. The constructs IN-STATE, CONDITION, CAUSES,
THEN-STATE and TO-HAPPEN are like the five brackets around a table of four things.

IN-STATE
\

CONDITION
/\

CAUSES
/\

THEN-STATE
/\

TO-HAPPEN
/

<from state> <Boolean> <action> <to state>

In a transition description the constructs IN-STATE, CONDITION, CAUSES, THEN-
STATE and TO-HAPPEN are always there (with some possible options to be set out later).
The “meat slices” between the “slices of bread” are the hearty stuffing of the
description. You will fill in those portions to your own needs and liking. The language
provides “the bread” (with only a few options to be discussed later).

So here you have learned a bit of the syntax of IsoMax™. Machines are defined, states
appended. The transitions are laid out in a pattern, with certain words surrounding
others. Procedural parts are inserted in the transitions between the standard clauses.

The syntax is very loose compared to some languages. What is important is the order
or sequence these words come in. Whether they occur on one line or many lines, with
one space or many spaces between them doesn’t matter. Only the order is important.

THREE MACHINES

Now let’s take a first step at exploring IsoMax™ the language by looking at some very
simple examples. We’ll explore the language with what we’ve just tested earlier, the
LED words. We’ll add some machines that will use the LED’s as outputs, so we can
visually “see” how we’re coming along.

REDTRIGGER

First let’s make a very simple machine. Since it is so short, at least in V0.3 and later,
it’s presented first without detailed explanation, entered and tested. Then we will
explain the language to create the machine step by step

(THESE GRAY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3
(IF YOU”VE GOT V0.2 JUST ENTER GRAY’D VERBATUM.
(IF YOU’VE GOT V0.3, IGNORE, ALREADY IN THE LANGUAGE

HEX
: OFF?
 1 =
 IF
 2DUP 3 + @ SWAP FFFF XOR AND OVER 3 + !
 2DUP 2 + @ SWAP FFFF XOR AND OVER 2 + !
 1 + @ AND 0=
 ELSE
 SWAP DROP DUP @ FCFE AND OVER ! @ FF7F AND 0=
 THEN
;
DECIMAL

MACHINE REDTRIGGER ON-MACHINE REDTRIGGER APPEND-STATE RT
IN-STATE RT CONDITION PA7 OFF? CAUSES REDLED ON THEN-STATE RT TO-HAPPEN

RT SET-STATE (INSTALL REDTRIGGER
EVERY 50000 CYCLES SCHEDULE-RUNS REDTRIGGER

There you have it, a complete real time program in two lines of IsoMax™, and one
additional line to install it. A useful virtual machine is made here with one state and
one transition.

This virtual machine acts like a non-retriggerable one-shot made in hardware. (NON-
RETRIGGERABLE ONE-SHOT TIMER: Produces a preset timed output signal on the
occurrence of an input signal. The timed output response may begin on either the
leading edge or the trailing edge of the input signal. The preset time (in this case:
infinity) is independent of the duration of the input signal.) For an example of a
hardware non-retriggerable one-shot, see
http://www.philipslogic.com/products/hc/pdf/74hc221.pdf.

http://www.philipslogic.com/products/hc/pdf/74hc221.pdf

If PA7 goes low briefly, the red LED turns on and stays on even if PA7 then changes.
PA7 normally has a pull up resistor that will keep it “on”, or “high” if nothing is
attached. So attaching push button from PA7 to ground, or even hooking a jumper test
lead to ground and pushing the other end into contact with the wire lead in PA7, will
cause PA7 to go “off” or “low”, and the REDLED will come on.

(In these examples, any port line that can be an input could be used. PA7 here, PB7
and PB6 later, were chosen because they are at the bottom of J1 and the easiest for you
to access.)

Now if you want, type these lines shown above in. (If you are reading this manual
electronically, you should be able to highlight the text on screen and copy the text to
the clipboard with Cntl-C. Then you may be able to paste into your terminal program.
On MaxTerm, the command to down load the clipboard is Alt-V. On other windows
programs it might be Cntl-V.)

Odds are your red LED is already on. When the IsoPod™ powers up, it’s designed to
have the LED’s on, unless programmed otherwise by the user. So to be useful we must
reset this one-shot. Enter:

REDLED OFF

Now install the REDTRIGGER by installing it in the (now empty) machine chain.

RT SET-STATE (INSTALL REDTRIGGER
EVERY 50000 CYCLES SCHEDULE-RUNS REDTRIGGER

Ground PA7 with a wire or press the push button, and see the red LED come on.
Remove the ground or release the push button. The red LED does not go back off. The
program is still running, even though all visible changes end at that point. To see that,
we’ll need to manually reset the LED off so we can see something happen again.
Enter.

REDLED OFF

If we ground PA7 again, the red LED will come back on, so even though we are still
fully interactive with the IsoPod™ able to type commands like REDLED OFF in
manually, the REDTRIGGER machine is running in the background.

Now let’s go back through the code, step-by-step. We’ll take it nice and easy. We’ll
take the time explain the concepts of this new language we skipped over previously.

Here in this box, the code for REDTRIGGER “pretty printed” so you can see how the
elements of the program relate to a state machine diagram. Usually you start to learn a
language by learning the syntax, or how and where elements of the program must be
placed. The syntax of the IsoMax™ language is very loose. Almost anything can go on
any line with any amount of white space between them as long as the sequence
remains the same. So in the pretty printing, most things are put on a separate line and
have spaces in front of them just to make the relationships easy to see. Beyond the

basic language syntax, a few words have a further syntax associated to them. They
must have new names on the same line as them. In this example, MACHINE, ON-
MACHINE and APPEND-STATE require a name following. You will see that they do.
More on syntax will come later.

PROGRAM TEXT EQUIVALENT GRAPHIC

MACHINE REDTRIGGER

 ON-MACHINE REDTRIGGER
 APPEND-STATE RT

IN-STATE
 RT
CONDITION
 PA7 OFF?
CAUSES
 REDLED ON
THEN-S
 RT

TATE

TO-HAPPEN

TO STATE FROM STATE

BOOLEAN

ACTION

MAKE A MACHINE

ADD A TRANSITION

ADD A STATE
PA7 OFF?

REDLED ON

RT

In this example, the first program line, we tell IsoMax™ we’re making a new virtual
machine, named REDTRIGGER. (Any group of characters without a space or a backspace
or return will do for a name. You can be very creative. Use up to 32 characters. Here
the syntax is MACHINE followed by the chosen name.)

MACHINE REDTRIGGER

That’s it. We now have a new machine. This particular new machine is named
REDTRIGGER. It doesn’t do anything yet, but it is part of the language, a piece of our
program.

For our second program line, we’ll identify REDTRIGGER as the machine we want to
append things to. The syntax to do this is to say ON-MACHINE and the name of the
machine we want to work on, which we named REDTRIGGER so the second program line
looks like this:

 ON-MACHINE REDTRIGGER

(Right now, we only have one machine installed. We could have skipped this second
line. Since there could be several machines already in the IsoPod™ at the moment, it is
good policy to be explicit. Always use this line before appending states. When you
have several machines defined, and you want to add a state or transition to one of

them, you will need that line to pick the machine being appended to. Otherwise, the
new state or transition will be appended to the last machine worked on.)

All right. We add the machine to the language. We have told the language the name of
the machine to add states to. Now we’ll add a state with a name. The syntax to do this
is to say APPEND-STATE followed by another made-up name of our own. Here we
add one state RT like this:

 APPEND-STATE RT

States are the fundamental parts of our virtual machine. States help us factor our
program down into the important parts. A state is a place where the computer’s outputs
are stable, or static. Said another way, a state is place where the computer waits. Since
all real time programs have places where they wait, we can use the waits to allow
other programs to have other processes. There is really nothing for a computer to do
while its outputs are stable, except to check if it is time to change the outputs.

(One of the reasons IsoMax™ can do virtually parallel processing, is it never allows the
computer to waste time in a wait, no backwards branches allowed. It allows a check for
the need to leave the state once per scheduled time, per machine.)

To review, we’ve designed a machine and a sub component state. Now we can set up
something like a loop, or jump, where we go out from the static state when required to
do some processing and come back again to a static wait state.

The rules for changing states along with the actions to do if the rule is met are called
transitions. A transition contains the name of the state the rule applies to, the rules
called the condition, what to do called the action, and “where to go” to get into another
state. (We have only one state in this example, so the last part is easy. There is no
choice. We go back into the same state. In machines with more than one state, it is
obviously important to have this final piece.)

There’s really no point in have a state in a machine without a transition into or out of it.
If there is no transition into or out of a state, it is like designing a wait that cannot start,
cannot end, and cannot do anything else either.

On the other hand, a state that has no transition into it, but does have one out of it,
might be an “initial state” or a “beginning state”. A state that has a transition into it, but
doesn’t have one out of it, might be a “final state” or an “ending state”. However, most
states will have at least one (or more) transition entering the state and one (or more)
transition leaving the state. In our example, we have one transition that leaves the
state, and one that comes into the state. It just happens to be the same one.

Together a condition and action makes up a transition, and transitions go from one
specific state to another specific state. So there are four pieces necessary to describe a
transition; 1) The state the machine starts in. 2) the condition to leave that state 3) the
action taken between states and 4) the new state the machine goes to.

Looking at the text box with the graphic in it, we can see the transitions four elements
clearly labeled. In the text version, these four elements are printed in bold. In the
equivalent graphic they are labeled as “FROM STATE”, “BOOLEAN”, “ACTION”
and “TO STATE”.

The “FROM STATE” is RT. The “BOOLEAN” is a simple phrase checking I/O PA7
OFF?. The “ACTION” is REDLED ON. The “TO STATE” is again RT.

So to complete our state machine program, we must define the transition we need. The
syntax to make a transition, then, is to fill in the blanks between this form: IN-STATE
<name> CONDITION <Boolean> CAUSES <action> THEN-STATE <name> TO-HAPPEN.

Whether the transition is written on one line as it was at first:

IN-STATE RT CONDITION PA7 OFF? CAUSES REDLED ON THEN-STATE RT TO-HAPPEN

Or pretty printed on several lines as it was in the text box:

IN-STATE
 RT
CONDITION
 PA7 OFF?
CAUSES
 REDLED ON
THEN-STATE
 RT
TO-HAPPEN

The effect is the same. The five bordering words are there, and the four user supplied
states, condition and action are in the same order and either way do the same thing.

After the transition is added to the program, the program can be tested and installed as
shown above.

State machine diagrams (the graphic above being an example)
are nothing new. They are widely used to design hardware. They
come with a few minor style variations, mostly related to how the
outputs are done. But they are all very similar. The figure to the
right is a hardware Quadrature design with four states.

While FSM diagrams are also widely known in programming as an abstract
computational element, there are few instances where they are used to design
software. Usually, the tools for writing software in state machines are very hard to
follow. The programming style doesn’t seem to resemble the state machine design, and
is often a slow, table-driven “read, process all inputs, computation and output” scheme.

IsoMax™ technology has overcome this barrier, and gives you the ability to design
software that looks “like” hardware and runs “like” hardware (not quite as fast of
course, but in the style, or thought process, or “paradigm” of hardware) and is
extremely efficient. The Virtually Parallel Machine Architecture lets you design many
little, hardware-like, machines, rather than one megalith software program that lumbers
through layer after layer of if-then statements. (You might want to refer to the IsoMax
Reference Manual to understand the language and its origins.)

ANDGATE1

Let’s do another quick little machine and install both machines so you can see them
running concurrently.

(THESE GREY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3

HEX
: ON?
 1 =
 IF
 2DUP 3 + @ SWAP FFFF XOR AND OVER 3 + !
 2DUP 2 + @ SWAP FFFF XOR AND OVER 2 + !
 1 + @ AND
 ELSE
 SWAP DROP DUP @ FCFE AND OVER ! @ FF7F AND 0= NOT
 THEN
;
DECIMAL

MACHINE ANDGATE1 ON-MACHINE ANDGATE1 APPEND-STATE X
IN-STATE X CONDITION YELLED OFF PA7 ON? PB7 ON? AND CAUSES YELLED ON THEN-STATE
X TO-HAPPEN

X SET-STATE (INSTALL ANDGATE1
MACHINE-CHAIN CHN1 REDTRIGGER ANDGATE1 END-MACHINE-CHAIN
EVERY 50000 CYCLES SCHEDULE-RUNS CHN1

There you have it, another complete real time program in three lines of IsoMax™, and
one additional line to install it. A useful virtual machine is made here with one state
and one transition. This virtual machine acts (almost) like an AND gate made in
hardware.
For example: http://www.philipslogic.com/products/hc/pdf/74hc08.pdf

http://www.philipslogic.com/products/hc/pdf/74hc08.pdf

Both PA7 and PB7 must be on, or high, to allow the yellow LED to remain on (most of
the time). So by attaching push buttons to PA7 and PB7 simulating micro switches this
little program could be used like an interlock system detecting “cover closed”.

PROGRAM TEXT EQUIVALENT GRAPHIC

MACHINE ANDGATE1

 ON-MACHINE ANDGATE1
 APPEND-STATE X

IN-STATE
 X
CONDITION

FF YELLED O
 PA7 ON?
 PB7 ON? AND
CAUSES
 YELLED ON
THEN-
 X

STATE

TO-HAPPEN

MAKE A MACHINE

ADD A TRANSITION

ADD A STATE

YELLED OFF
PA7 ON?

PB7 ON? AND

YELLED ON

X

(Now it is worth mentioning, the example is a bit contrived. When you try to make a state
machine too simple, you wind up stretching things you shouldn’t. This example could
have acted exactly like an AND gate if two transitions were used, rather than just one.
Instead, a “trick” was used to turn the LED off every time in the condition, then turn it on
only when the condition was true. So a noise spike is generated a real “and” gate doesn’t
have. The trick made the machine simpler, it has half the transitions, but it is less
functional. Later we’ll revisit this machine in detail to improve it.)

Notice both machines share an input, but are using the opposite sense on that input.
ANDGATE1 looks for PA7 to be ON, or HIGH. The internal pull up will normally make
PA7 high, as long as it is programmed for a pull up and nothing external pulls it down.

Grounding PA7 enables REDTRIGGER’s condition, and inhibits ANDGATE1’s condition.
Yet the two machines coexist peacefully on the same processor, even sharing the same
inputs in different ways.

To see these machines running enter the new code, if you are still running REDTRIGGER,
reset (toggle the DTR line on the terminal, for instance, Alt-T twice in MaxTerm or
cycle power) and download the whole of both programs.

Initialize REDTRIGGER for action by turning REDLED OFF as before. Grounding PA7 now
causes the same result for REDTRIGGER, the red LED goes on, but the opposite effect
for the yellow LED, which goes off while PA7 is grounded. Releasing PA7 turns the
yellow LED back on, but the red LED remains on.
Again, initialize REDTRIGGER by turning REDLED OFF. Now ground PB7. This has no
effect on the red LED, but turns off the yellow LED while grounded. Grounding both
PA7 and PB7 at the same time also turns off the yellow LED, and turns on the red LED
if not yet set.

Notice how the tightly the two machines are intertwined. Perhaps you can imagine how
very simple machines with combinatory logic and sharing inputs and feeding back
outputs can quickly start showing some complex behaviors. Let’s add some more
complexity with another machine sharing the PA7 input.

BOUNCELESS

We have another quick example of a little more complex machine, one with one state
and two transitions.

MACHINE BOUNCELESS ON-MACHINE BOUNCELESS APPEND-STATE Y
IN-STATE Y CONDITION PA7 OFF? CAUSES GRNLED OFF THEN-STATE Y TO-HAPPEN
IN-STATE Y CONDITION PB6 OFF? CAUSES GRNLED ON THEN-STATE Y TO-HAPPEN

Y SET-STATE (INSTALL BOUNCELESS

MACHINE-CHAIN 3EASY
REDTRIGGER
ANDGATE
BOUNCELESS
END-MACHINE-CHAIN

EVERY 50000 CYCLES SCHEDULE-RUNS 3EASY

There you have yet another complete design, initialization and installation of a virtual
machine in four lines of IsoMax™ code.

Another name for the machine in this program is “a bounceless switch”.

Bounceless switches filter out any noise on their input buttons, and give crisp, one-edge
output signals. They do this by toggling state when an input first becomes active, and
remaining in that state. If you are familiar with hardware, you might recognize the two
gates feed back on each other as a very elementary flip-flop. The flip-flop is a bistable
on/off circuit is the basis for a memory cell. The bounceless switch flips when one input
is grounded, and will not flip back until the other input is grounded.

By attaching push buttons to PA7 and PB6 the green LED can be toggled from on to off
with the press of the PA7 button, or off to on with the press of the PB6. The PA7 button
acts as a reset switch, and the PB6 acts as a set switch.

PROGRAM TEXT EQUIVALENT GRAPHIC

MACHINE BOUNCELESS

 ON-MACHINE BOUNCELESS
 APPEND-STATE Y

IN-S
 Y

TATE

CONDITION
 PA7 OFF?
CAUSES
 GRNLED OFF
THEN-STATE
 Y
TO-HAPPEN

IN-S
 Y

TATE

CONDITION
 PB6 OFF?
CAUSES
 GRNLED ON
THEN-STATE
 Y
TO-HAPPEN

MAKE A MACHINE

ADD A TRANSITION

ADD A TRANSITION

GRNLED ON

PB6 OFF?

PA7 OFF?

GRNLED OFF

Y

ADD A STATE

You can see here, in IsoMax™, you can simulate hardware machines and circuits, with
just a few lines of code. Here we created one machine, gave it one state, and appended
two transitions to that state. Then we installed the finished machine along with the two
previous machines. All run in the background, freeing us to program more virtual
machines that can also run in parallel, or interactively monitor existing machines from
the foreground.

Notice all three virtual hardware circuits are installed at the same time, they operate
virtually in parallel, and the IsoPod™ is still not visibly taxed by having these machines

run in parallel. Further, all three machines share one input, so their behavior is strongly
linked.

SYNTAX AND FORMATTING

Let’s talk a second about pretty printing, or pretty formatting. To go a bit into syntax
again, you’ll need to remember the following. Everything in IsoMax™ is a word or a
number. Words and numbers are separated spaces (or returns).

Some words have a little syntax of their own. The most common cases for such words
are those that require a name to follow them. When you add a new name, you can use
any combinations of characters or letters except (obviously) spaces and backspaces,
and carriage returns. So, when it comes to pretty formatting, you can put as much on
one line as will fit (up to 80 characters). Or you can put as little on one line as you
wish, as long as you keep your words whole. However, some words will require a
name to follow them, so those names will have to be on the same line.

In the examples you will see white space (blanks) used to add some formatting to the
source text. MACHINE starts at the left, and is followed by the name of the new machine
being added to the language. ON-MACHNE is indented right by two spaces. APPEND-
STATE X is indented two additional spaces. This is the suggested, but not mandatory,
offset to achieve pretty formatting. Use two spaces to indent for levels. The transitions
are similarly laid out, where the required words are positioned at the left, and the user
programming is stepped in two spaces.

MULTIPLE STATES/MULTIPLE TRANSITIONS

Before we leave the previous “Three Machines”, let’s review the AND machine again,
since it had a little trick in it to keep it simple, just one state and one transition. The
trick does simplify things, but goes too far, and causes a glitch in the output. To make
an AND gate which is just like the hardware AND we need at least two transitions. The
previous example, BOUNCELESS was the first state machine with more than one
transition. We’ll follow this precedent and redo ANDGATE2 with two transitions.

ANDGATE2

(THESE GREY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3
(ASSUME ON? ALREADY DEFINED AS IN OTHER PROGRAM

MACHINE ANDGATE2
 ON-MACHINE ANDGATE2
 APPEND-STATE X

IN-STATE
 X
CONDITION
 PA7 ON?
 PB7 ON? AND
CAUSES
 YELLED ON
THEN-STATE
 X
TO-HAPPEN

IN-STATE
 X
CONDITION
 PA7 OFF?
 PB7 OFF? OR
CAUSES
 YELLED OFF
THEN-STATE
 X
TO-HAPPEN

X SET-STATE (INSTALL ANDGATE2
EVERY 50000 CYCLES SCHEDULE-RUNS ANDGATE2

PROGRAM TEXT EQUIVALENT GRAPHIC

MACHINE ANDGATE2

ON-MACHINE ANDGAT

 APPEND-STATE X
E2

IN-STATE
 X
CONDITION
 PA7 ON?
 PB7 ON? AND
CAUSES
 YELLED ON
THEN
 X

-STATE

TO-HAPPEN

IN-S
 X

TATE

CONDITION
 PA7 OFF?
 PB7 OFF? OR
CAUSES
 YELLED OFF
THEN
 X

-STATE

TO-HAPPEN

ADD A TRANSITION

YELLED OFF

PA7 OFF? PB7 OFF? OR

APPEND STATE

MAKE A MACHINE

ADD A TRANSITION

PA7 ON? PB7 ON? AND

YELLED ON

 X

Compare the transitions in the two ANDGATE’s to understand the trick in ANDGATE1.
Notice there is an “action” included in the ANDGATE1 condition clause. See the YELLED
OFF statement (highlighted in bold) in ANDGATE1, not present in ANDGATE2? Further
notice the same phrase YELLED OFF appears in the second transition of ANDGATE2 as the
object action of that transition.

TRANSITION COMPARISON

ANDGATE1

ANDGATE2
IN-STATE
 X
CONDITION
 YELLED OFF
 PA7 ON?
 PB7 ON? AND
CAUSES
 YELLED ON
THEN-STATE
 X
TO-HAPPEN

IN-STATE
 X
CONDITION

 PA7 ON?
 PB7 ON? AND
CAUSES
 YELLED ON
THEN-STATE
 X
TO-HAPPEN

IN-STATE
 X
CONDITION

 PA7 OFF?
 PB7 OFF? OR
CAUSES
 YELLED OFF
THEN-STATE
 X
TO-HAPPEN

The way this trick worked was by using an action in the condition clause, every time
the scheduler ran the chain of machines, it would execute the conditions clauses of all
transitions on any active state. Only if the condition was true, did any action of a
transition get executed. Consequently, the trick used in ANDGATE1 caused the action of
the second transition to happen when conditionals (only) should be running. This meant
it was as if the second transition of ANDGATE2 happened every time. Then if the
condition found the action to be a “wrong” output in the conditional, the action of
ANDGATE1 ran and corrected the situation. The brief time the processor took to correct
the wrong output was the “glitch” in ANDGATE1’s output.

Now this AND gate, ANDGATE2, is just like the hardware AND, except not as fast as
most modern versions of AND gates implemented in random logic on silicon. The
latency of the outputs of ANDGATE2 are determined by how many times ANDGATE2 runs
per second. The programmer determines the rate, so has control of the latency, to the
limits of the CPU’s processing power.

The original ANDGATE1 serves as an example of what not to do, yet also just how
flexible you can be with the language model. Using an action between the CONDITION
and CAUSES phrase is not prohibited, but is considered not appropriate in the paradigm
of Isostructure.

An algorithm flowing to determine a single Boolean value should be the only thing in
the condition clause of a transition. Any other action there slows the machine down,
being executed every time the machine chain runs.

Most of the time, states wait. A state is meant to take no action, and have no output.
They run the condition only to check if it is time to stop the wait, time to take an action
in a transition.

The actions we have taken in these simple machines if very short. More complex
machines can have very complex actions, which should only be run when it is
absolutely necessary. Putting actions in the conditional lengthens the time it takes to
operate waiting machines, and steals time from other transitions.

Why was it necessary to have two transitions to do a proper AND gate? To find the
answer look at the output of an AND gate. There are two possible mutually exclusive
outputs, a “1” or a “0”. Once action cannot set an output high or low. One output can
set a bit high. It takes a different output to set a bit low. Hence, two separate outputs
are required.

ANDOUT

Couldn’t we just slip an action into the condition spot and do away with both
transitions? Couldn’t we just make a “thread” to do the work periodically? Yes,
perhaps, but that would break the paradigm. Let’s make a non-machine definition. The
output of our conditional is in fact a Boolean itself. Why not define:

: ANDOUT PA7 ON? PB7 ON? AND IF YELLED ON ELSE YELLED OFF THEN ;

Why not forget the entire “machine and state” stuff, and stick ANDOUT in the machine
chain instead? There are no backwards branches in this code. It has no Program
Counter Capture (PCC) Loops. It runs straight through to termination. It would work.

This, however, is another trick you should avoid. Again, why? This code does one of
two actions every time the scheduler runs. The actions take longer than the Boolean
test and transfer to another thread. The system will run slower, because the same
outputs are being generated time after time, whether they have changed or not. While
the speed penalty in this example is exceedingly small, it could be considerable for
larger state machines with more detailed actions.

A deeper reason exists that reveals a great truth about state machines. Notice we have
used a state machine to simulate a hardware gate. What the AND gate outputs next is

completely dependent on what the inputs are next. An AND gate has an output which
has no feedback. An AND gate has no memory. State machines can have memory.
Their future outputs depend on more than the inputs present. A state machine’s outputs
can also depend on the history of previous states. To appreciate this great difference
between state machines and simple gates, we must first look a bit further at some
examples with multiple states and multiple transitions.

ANDGATE3

We are going to do another AND gate version, ANDGATE3, to illustrate this point about
state machines having multiple states. This version will have two transitions and two
states. Up until now, our machines have had a single state. Machines with a single state
in general are not very versatile or interesting. You need to start thinking in terms of
machines with many states. This is a gentle introduction starting with a familiar
problem. Another change is in effect here. We have previously first written the code so
as to make the program small in terms of lines. We used this style to emphasize small
program length. From now on, we are going to pretty print it so it reads as easily as
possible, instead.

(THESE GREY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3
(ASSUME ON? ALREADY DEFINED

MACHINE ANDGATE3
 ON-MACHINE ANDGATE3
 APPEND-STATE X0
 APPEND-STATE X1

IN-STATE
 X0
CONDITION
 PA7 ON? PB7 ON? AND
CAUSES
 YELLED ON
 PB0 ON
THEN-STATE
 X1
TO-HAPPEN

IN-STATE
 X1
CONDITION
 PA7 OFF? PB7 OFF? OR
CAUSES
 YELLED OFF
 PB0 OFF
THEN-STATE
 X0
TO-HAPPEN

X0 SET-STATE (INSTALL ANDGATE3
EVERY 50000 CYCLES SCHEDULE-RUNS ANDGATE3

PROGRAM TEXT EQUIVALENT GRAPHIC

MACHINE ANDGATE3

 ON-MACHINE ANDGATE3
 APPEND-STATE X0
 APPEND-STATE X1

IN-STATE
 X0
CONDITION
 PA7 ON? PB7 ON? AND
CAUSES

ON YELLED
 PB0 ON
THEN-S
 X1

TATE

TO-HAPPEN

IN-ST
 X1

ATE

CONDITION
 PA7 OFF? PB7 OFF? OR
CAUSES

FF YELLED O
 PB0 OFF
THEN-ST
 X0

ATE

TO-HAPPEN

ADD A TRANSITION

YELLED OFF
PB0 OFF

PA7 OFF? PB7 OFF? OR

X1

MAKE A MACHINE

ADD A TRANSITION

PA7 ON? PB7 ON? AND

YELLED ON
PB0 ON

X0

Notice how similar this version of an AND gate, ANDGATE3, is to the previous version,
ANDGATE2. The major difference is that there are two states instead of one. We also
added some “spice” to the action clauses, doing another output on PB0, to show how
actions can be more complicated.

INTER-MACHINE COMMUNICATIONS

Now imagine ANDGATE3 is not an end unto itself, but just a piece of a larger problem.
Now let’s say another machine needs to know if both PA7 and PB7 are both high? If
we had only one state, it would have to recalculate the AND phrase, or read back what
ANDGATE3 had written as outputs. Rereading written outputs is sometimes dangerous,
because there are hardware outputs which is cannot be read back. If we use different
states for each different output, the state information itself stores which state is active.
All an additional machine has to do to discover the status of PA7 and PB7 AND’ed
together is check the stored state information of ANDGATE3. To accomplish this, simply
query the state this way.

X0 IS-STATE?

A Boolean value will be returned that is TRUE if either PA7 and PB7 are low. This
Boolean can be part of a condition in another state. On the other hand:

X1 IS-STATE?

will return a TRUE value only if PA7 and PB7 are both high.

STATE MEMORY

So you see, a state machine’s current state is as much as an output as the outputs PB0 ON
and YELLOW LED ON are, less likely to have read back problems, and faster to check.
The current state contains more information than other outputs. It can also contain
history. The current state is so versatile, in fact, it can store all the pertinent history
necessary to make any decision on past inputs and transitions. This is the deep truth
about state machines we sought.

9-2 THE FINITE-STATE MODEL -- BASIC DEFINITION

The behavior of a finite-state machine is described as a sequence of events
that occur at discrete instants, designated t = 1, 2, 3, etc. Suppose that a
machine M has been receiving inputs signals and has been responding by
producing output signals. If now, at time t, we were to apply an input
signal x(t) to M, its response z(t) would depend on x(t), as well as the past
inputs to M.

From: SWITCHING AND FINITE AUTOMATA THEORY, KOHAVI

No similar solution is possible with short code threads. While variables can indeed be
used in threads, and threads can again reference those variable, using threads and
variables leads to deeply nested IF ELSE THEN structures and dreaded spaghetti code
which often invades and complicates real time programs.

BOUNCELESS+

To put the application of state history to the test, let’s revisit our previous version of the
machine BOUNCELESS. Refer back to the code for transitions we used in BOUNCELESS.

STATE Y

IN-STATE
 Y
CONDITION
 PA7 OFF?
CAUSES
 GRNLED OFF
THEN-STATE
 Y
TO-HAPPEN

IN-STATE
 Y
CONDITION
 PB6 OFF?
CAUSES
 GRNLED ON
THEN-STATE
 Y
TO-HAPPEN

This code worked fine, as long as PA7 and PB6 were pressed one at a time. The green
LED would go on and off without noise or bounces between states. Notice however,
PA7 and PB6 being low at the same time is not excluded from the code. If both lines go
low at the same time, the output of our machine is not well determined. One state
output will take precedence over the other, but which it will be cannot be determined
from just looking at the program. Whichever transition gets first service will win.

PROGRAM TEXT EQUIVALENT GRAPHIC

MACHINE BOUNCELESS+

 ON-MACHINE BOUNCELESS+
 APPEND-STATE WAITOFF
 APPEND-STATE WAITON

IN-STATE
 WAITOFF
CONDITION
 PA7 OFF? PB7 ON? AND
CAUSES
 GRNLED ON
THEN-STATE
 WAITON
TO-HAPPEN

IN-STATE
 WAITON
CONDITION
 PB7 OFF? PA7 ON? AND
CAUSES
 GRNLED OFF
THEN-STATE
 WAITOFF
TO-HAPPEN

 PA7 OFF? PB7 ON? AND

WAITOFF

 PB7

Now consider how BOUNCELESS+ can be improved if th
integrated into the problem. In order to have state histo
we must have multiple states. As we did with our ANDG
The new states are WAITON and WAITOFF and run our tw
states.
GRNLED ON

OFF? PA7 ON? AND

WAITON
GRNLED OFF
e state machines history is
ry of any significance, however,
ATE3 let’s add one more state.
o transitions between the two

At first blush, the new machine looks more complicated, probably slower, but not
significantly different from the previous version. This is not true however. When the
scheduler calls a machine, only the active state and its transitions are considered. So in
the previous version each time Y was executed, two conditionals on two transitions
were tested (assuming no true condition). In this machine, two conditionals on only one
transition are tested. As a result this machine runs slightly faster.

Further, the new BOUNCELESS+ machine is better behaved. (In fact, it is better behaved
than the original hardware circuit shown!) It is truly bounceless, even if both switches
are pressed at once. The first input detected down either takes us to its state or inhibits
the release of its state. The other input can dance all it wants, as long as the one first
down remains down. Only when the original input is released can a new input cause a
change of state. In the rare case where both signals occur at once, it is the history, the
existing state, which determines the status of the machine.

STATE WAITOFF

STATE WAITON

IN-STATE
 WAITOFF
CONDITION
 PA7 OFF? PB7 ON? AND
CAUSES
 GRNLED ON
THEN-STATE
 WAITON

TO-HAPPEN

IN-STATE
 WAITON
CONDITION
 PB7 OFF? PA7 ON? AND
CAUSES
 GRNLED OFF
THEN-STATE
 WAITOFF
TO-HAPPEN

DELAYS

Let’s say we want to make a steady blinker out of the green LED. In a conventional
procedural language, like BASIC, C, FORTH, or Java, etc., you’d probably program a
loop blinking the LED on then off. Between each loop would be a delay of some kind,
perhaps a subroutine you call which also spins in a loop wasting time.

Assembler BASIC C JAVA FORTH
LOOP1 LDX # 0 FOR I=1 TO N While (1) BEGIN
LOOP2 DEX
 BNE LOOP2

GOSUB DELAY { delay(x); DELAY

 LDAA #1
 STAA PORTA
 LDX # 0

LET PB=TRUE out(1,portA1); LED-ON

LOOP3 DEX
 BNE LOOP3

GOSUB DELAY delay(x); DELAY

 LDAA #N
 STAA PORTA

Let PB=FALSE out(0,portA1); LED-OFF

 JMP LOOP1 NEXT } AGAIN

Here’s where IsoMax™ will start to look different from any other language you’re
likely to have ever seen before. The idea behind Virtually Parallel Machine
Architecture is constructing virtual machines, each a little “state machine” in its own
right. But this IsoStructure requires a limitation on the machine, themselves. In
IsoMax™, there are no program loops, there are no backwards branches, there are no
calls to time wasting delays allowed. Instead we design machines with states. If we
want a loop, we can make a state, then write a transition from that state that returns to
that state, and accomplish roughly the same thing. Also in IsoMax™, there are no delay
loops.

The whole point of having a state is to allow “being in the state” to be “the delay”.

Breaking this restriction will break the functionality of IsoStructure, and the parallel
machines will stop running in parallel. If you’ve ever programmed in any other
language, your hardest habit to break will be to get away from the idea of looping in
your program, and using the states and transitions to do the equivalent of looping for
you.

A valid condition to leave a state might be a count down of passes through the state
until a 0 count reached. Given the periodicity of the scheduler calling the machine
chain, and the initial value in the counter, this would make a delay that didn’t “wait” in
the conventional sense of backwards branching.

BLINKGRN

Now for an example of a delay using the count down to zero, we make a machine
BLINKGRN. Reset your IsoPod™ so it is clean and clear of any programs, and then begin.

MACHINE BLINKGRN
 ON-MACHINE BLINKGRN
 APPEND-STATE BG1
 APPEND-STATE BG2

The action taken when we leave the state will be to turn the LED off and reinitialize
the counter. The other half of the problem in the other state we go to is just the
reversed. We delay for a count, then turn the LED back on.

Since we’re going to count, we need two variables to work with. One contains the
count, the other the initial value we count down from. Let’s add a place for those
variables now, and initialize them

ADD STATES CNT DEC&TEST?

: -LOOPVAR <BUILDS HERE P, 1- DUP , , DOES>
 P@ DUP @ 0= IF DUP 1 + @ SWAP ! TRUE ELSE 1-! FALSE THEN ;
100 -LOOPVAR CNT

IN-STATE
 BG1
CONDITION
 CNT
CAUSES
 GRNLED OFF
THEN-STATE
 BG2
TO-HAPPEN

IN-STATE
 BG2
CONDITION
 CNT
CAUSES
 GRNLED ON
THEN-STATE
 BG1
TO-HAPPEN

PROGRAM TEXT EQUIVALENT GRAPHIC

MACHINE BLINKGRN

 ON-MACHINE BLINKGRN
 APPEND-STATE BG1
 APPEND-STATE BG2

100 0 LOOPVAR CNT

IN-STATE
 BG1
CONDITION
 CNT
CAUSES
 GRNLED OFF
THEN-STATE
 BG2
TO-HAPPEN

IN-STATE
 BG2
CONDITION
 CNT
CAUSES
 GRNLED ON
THEN-STATE
 BG1
TO-HAPPEN

GRNLED ON

 CNT

BG1

 CNT

BG2

GRNLED OFF

Above, the two transitions are “pretty printed” to make the four components of a
transition stand out. As discussed previously, as long as the structure is in this order it
could just as well been run together on a single line (or so) per transition, like this

IN-STATE BG1 CONDITION CNT CAUSES GRNLED OFF THEN-STATE BG2 TO-HAPPEN

IN-STATE BG2 CONDITION CNT CAUSES GRNLED ON THEN-STATE BG1 TO-HAPPEN

Finally, the new machine must be installed and tested

BG1 SET-STATE (INSTALL BLINKGRN
EVERY 50000 CYCLES SCHEDULE-RUNS BLINKGRN

The result of this program is that the green LED blinks on and off. Every time the
scheduler runs the machine chain, control is passed to whichever state BG1 or BG2 is
active. The -LOOPVAR created word CNT is decremented and tested. When the CNT
reaches zero, it is reinitialize back to the originally set value, and passes a Boolean on
to be tested by the transition. If the Boolean is TRUE, the action is initiated.

The GRNLED is turned ON of OFF (as programmed in the active state) and the other state is
set to happen the next control returns to this machine.

SPEED

You’ve seen how to write a machine that delays based on a counter. Let’s now try a
slightly less useful machine just to illustrate how fast the IsoPod™ can change state.
First reset your machine to get rid of the existing machines.

ZIPGRN

MACHINE ZIPGRN

 ON-MACHINE ZIPGRN
 APPEND-STATE ZIPON
 APPEND-STATE ZIPOFF

IN-STATE ZIPON CONDITION TRUE CAUSES GRNLED OFF THEN-STATE ZIPOFF
TO-HAPPEN

IN-STATE ZIPOFF CONDITION TRUE CAUSES GRNLED ON THEN-STATE ZIPON
TO-HAPPEN

ZIPON SET-STATE

Now rather than install our new machine we’re going to test it by running it “by hand”
interactively. Type in:

ZIPON SET-STATE
ZIPGRN

ZIPGRN should cause a change in the green LED. The machine runs as quickly as it can
to termination, through one state transition, and stops. Run it again. Type:

ZIPGRN

Once again, the green LED should change. This time the machine starts in the state
with the LED off. The always TRUE condition makes the transition’s action happen and
the next state is set to again, back to the original state. As many times as you run it, the
machine will change the green LED back and forth.

Now with the machine program and tested, we’re ready to install the machine into the
machine chain. The phrase to install a machine is :

 EVERY n CYCLES SCHEDULE-RUNS word

So for our single machine we’d say:

 ZIPON SET-STATE
 EVERY 5000 CYCLES SCHEDULE-RUNS ZIPGRN

Now if you look at your green LED, you’ll see it is slightly dimmed.

That’s because it is being turned off half the time, and is on half the time. But it is
happening so fast you can’t even see it.

REDYEL

Let’s do another of the same kind. This time lets do the red and yellow LED, and have
them toggle, only one on at a time. Here we go:

MACHINE REDYEL

 ON-MACHINE REDYEL
 APPEND-STATE REDON
 APPEND-STATE YELON

IN-STATE REDON CONDITION TRUE CAUSES REDLED OFF YELLED ON THEN-STATE
YELON TO-HAPPEN

IN-STATE YELON CONDITION TRUE CAUSES REDLED ON YELLED OFF THEN-STATE
REDON TO-HAPPEN

Notice we have more things happening in the action this time. One LED is turned on
and one off in the action. You can have multiple instructions in an action.

Test it. Type:

REDON SET-STATE
REDYEL

REDYEL
REDYEL
REDYEL

See the red and yellow LED’s trade back and forth from on to off and vice versa.

All this time, the ZIPGRN machine has been running in the background, because it is in
the installed machine chain. Let’s replace the installed machine chain with another. So
we define a new machine chain with both our virtual machines in it, and install it.

MACHINE-CHAIN CHN2
 ZIPGRN
 REDYEL
END-MACHINE-CHAIN

REDON SET-STATE
EVERY 5000 CYCLES SCHEDULE-RUNS CHN2

With the new machine chain installed, all three LED’s look slightly dimmed.

Again, they are being turned on and off a thousand times a second. But to your eye,
you can’t see the individual transitions. Both our virtual machines are running in virtual
parallel, and we still don’t see any slow down in the interactive nature of the IsoPod™.

So what was the point of making these two machines? Well, these two machines are
running faster than the previous ones. The previous ones were installed with 50,000

cycles between runs. That gave a scan-loop repetition of 100 times a second. Fine for
many mechanical issues, on the edge of being slow for electronic interfaces. These last
examples were installed with 5,000 cycles between runs. The scan-loop repetition was
1000 times a second. Fine for many electronic interfaces, that is fast enough. Now let’s
change the timing value. Redo the installation with the SCHEDULE-RUNS command.

The scan-loop repetition is 10,000 times a second.

EVERY 500 CYCLES SCHEDULE-RUNS CHN2

Let’s see if we can press our luck.

EVERY 100 CYCLES SCHEDULE-RUNS CHN2

Even running two machines 50,000 times a second in high-level language, there is still
time left over to run the foreground routine. This means, two separate tasks are being
started and running a series of high-level instructions 50,000 times a second. This
shows the IsoPod™ is running more than four hundred thousand high-level instructions
per second. The IsoPod™ performance is unparalleled in any small computer available
today.

TRINARIES

With the state machine structures already given, and a simple input and output words
many useful machines can be built. Almost all binary digital control applications can be
written with the trinary operators.

As an example, let’s consider a digital thermostat. The thermostat works on a digital
input with a temperature sensor that indicates the current temperature is either above
or below the current set point. The old style thermostats had a coil made of two
dissimilar metals, so as the temperature rose, the outside metal expanded more rapidly
than the interior one, causing a mercury capsule to tip over. The mercury moving to
one end of the capsule or the other made or broke the circuit. The additional weight of
mercury caused a slight feedback widening the set point. Most heater systems are
digital in nature as well. They are either on or off. They have no proportional range of
heating settings, only heating and not heating. So in the case of a thermostat,
everything necessary can be programmed with the machine format already known, and
a digital input for temperature and a digital output for the heater, which can be
programmed with trinaries.

Input trinary operators need three parameters to operate. Using the trinary operation
mode of testing bits and masking unwanted bits out would be convenient. This mode
requires: 1) a mask telling which bits in to be checked for high or low settings, 2) a
mask telling which of the 1 possible bits are to be considered, and 3) the address of the
I/O port you are using. The keywords which separate the parameters are, in order: 1)
SET-MASK, 2) CLR-MASK and 3) AT-ADDRESS. Finally, the keyword FOR-INPUT
finishes the defining process, identifying the trinary operator in effect.

DEFINE <name> TEST-MASK <mask> DATA-MASK <mask> AT-ADDRESS <address> FOR-INPUT

Putting the keywords and parameters together produces the following lines of IsoMax™
code. Before entering hexadecimal numbers, the keyword HEX invokes the use of the
hexadecimal number system. This remains in effect until it is change by a later
command. The numbering system can be returned to decimal using the keyword
DECIMAL:

HEX
DEFINE TOO-COLD? TEST-MASK 01 DATA-MASK 01 AT-ADDRESS 0FB1 FOR-INPUT
DEFINE TOO-HOT? TEST-MASK 01 DATA-MASK 00 AT-ADDRESS 0FB1 FOR-INPUT
DECIMAL

Output trinary operators also need three parameters. In this instance, using the trinary
operation mode of setting and clearing bits would be convenient. This mode requires:
1) a mask telling which bits in the output port are to be set, 2) a mask telling which bits
in the output port are to be cleared, and 3) the address of the I/O port. The keywords
which proceed the parameters are, in order: 1) SET-MASK, 2) CLR-MASK and 3) AT-
ADDRESS. Finally, the keyword FOR-OUTPUT finishes the defining process,
identifying which trinary operator is in effect.

DEFINE <name> AND-MASK <mask> XOR-MASK <mask> AT-ADDRESS <address> FOR-OUTPUT
DEFINE <name> CLR-MASK <mask> SET-MASK <mask> AT-ADDRESS <address> FOR-OUTPUT

A single output port line is needed to turn the heater on and off. The act of turning the
heater on is unique and different from turning the heater off, however. Two actions
need to be defined, therefore, even though only one I/O line is involved. PA1 was
selected for the heater control signal.

When PA1 is high, or set, the heater is turned on. To make PA1 high, requires PA1 to
be set, without changing any other bit of the port. Therefore, a set mask of 02 indicates
the next to least significant bit in the port, corresponding to PA1, is to be set. All other
bits are to be left alone without being set. A clear mask of 00 indicates no other bits of
the port are to be cleared.

When PA1 is low, or clear, the heater is turned off. To make PA1 low, requires PA1 to
be cleared, without changing any other bit of the port. Therefore, a set mask of 00
indicates no other bits of the port are to be set. A clear mask of 02 indicates the next to
least significant bit in the port, corresponding to PA1, is to be cleared. All other bits are
to be left alone without being cleared.

Putting the keywords and parameters together produces the following lines of IsoMax™
code:

HEX
DEFINE HEATER-ON SET-MASK 02 CLR-MASK 00 AT-ADDRESS 0FB0 FOR-OUTPUT
DEFINE HEATER-OFF SET-MASK 00 CLR-MASK 02 AT-ADDRESS 0FB0 FOR-OUTPUT
DECIMAL

Only a handful of system words need to be covered to allow programming at a system
level, now.

PROCEDURAL PROGRAMMING

The FSM portions of IsoMax™ are now covered. What remains to be discussed is the
procedural portions of the conditions and actions.

END-MACHINE-CHAIN
MACHINE-CHAIN
SCHEDULE-RUNS
CYCLES
EVERY
DINT
EINT
STOP-TIMER
TCFOVFLO
TCFTICKS
END-PROC
PROC
AS-TAG
FOR-INPUT
FOR-OUTPUT
WITH-VALUE
SET-MASK
CLR-MASK
XOR-MASK
AND-MASK
DATA-MASK
TEST-MASK
AT-ADDR

IS-STATE?
SET-STATE
TO-HAPPEN
NEXT-TIME
THIS-TIME
THEN-STATE
CAUSES
CONDITION
IN-STATE
ON-MACHINE
APPEND-STATE
MACHINE
CURSTATE

ALLOC
RAM
DEFINE
\
PFMOVE
PFDP
PFERASE
PF!
EEERASE
PTYPE
PCOUNT
P,
PC,
PALLOT
PHERE
PDP
PC!
PC@
P@
P!
TD3
TD2
RS422XCV
RS232XMT
PD0
PD1
PD2
PD3
PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7
PA0
PA1
PA2
PA3
PA4
PA5

PA6
PA7
GRNLED
YELLED
REDLED
I/O
OFF
ON
IS
FALSE
TRUE

(
@
C@
!
C!
2@
2!
:
;
+
-
1-!
1+!
+!
*
/
><
SWAP
2OVER
2SWAP
DUP
2DUP
OVER
ROT
2ROT
PICK
ROLL
-ROLL
DROP
2DROP
>R
R>
=
NOT
0=
D0=
0>
0<
U<
<
DU<
D<
D=
>
AND

OR
XOR
IF
THEN
ELSE
BEGIN
UNTIL
REPEAT
WHILE
AGAIN
END
DO
LOOP
+LOOP
K
J
I
R@
LEAVE
EXIT
KEY
EMIT
?TERMINAL
S->D
ABS
DABS
MIN
DMIN
MAX
DMAX
SPACES
DEPTH
CR
TYPE
COUNT
-TRAILING
1+
2+
1-
2-
2/
2*
D+
D-
D2/
/MOD
MOD
*/MOD
*/
UM*
UM/MOD
NEGATE
DNEGATE
CONSTANT
VARIABLE
2CONSTANT
2VARIABLE

SF!
SF@
FTAN
FCOS
FSIN
FATAN2
FATAN
F?
FSQRT
F2/
F2*
F.S
FNUMBER
E.
F.
(E.)
(F.)
F**
FALOG
FEXP
2**X
FLN
FLOG
LOG2
ODD-POLY
POLY
FLOOR
FROUND
FLITERAL
PI
E
PLACES
FLOAT+
FLOATS
FVARIABLE
FCONSTANT
F,
F!
F@
FABS
FMIN
FMAX
F<
F0<
F0=
FNEGATE
F>D
S>F
D>F
F/
F*
F-
F+
FDROP
FSWAP
FOVER

FDUP
FNIP
FDEPTH
FSP
FSP0

TOGGLE
SP!
RP@
RP!
UABORT
WARNING
R0
SMUDGE
DLITERAL
MESSAGE
ERROR
?ERROR
?COMP
?EXEC
?PAIRS
?CSP
?STACK
@!
@@
EXECUTE
SP@
CMOVE>
CMOVE
;S
CODE-SUB
CODE
END-CODE
USER
.
.R
D.
U.
U.R
D.R
#S

SIGN
#>
<#
?
EXPECT
QUERY
BL
STATE
CURRENT
CONTEXT
BLK
DP
FLD
DPL
>IN

BASE
S0
TIB
#TIB
SPAN
C/L
PAD
HERE
ALLOT
,

C,
SPACE
?DUP
TRAVERSE
LATEST
COMPILE
[
]
HEX
DECIMAL
;CODE
<BUILDS
DOES>
."
.(
FILL
ERASE
BLANK
HOLD
WORD
CONVERT
NUMBER
FIND
ID.
CREATE
[COMPILE]
LITERAL
INTERPRET
IMMEDIATE
RECURSE
>MARK
<MARK
>RESOLVE
<RESOLVE
:CASE
'
[']
LFA
>BODY
CFA
NFA
PFAPTR
B/BUF
AUTOSTART
UNDO
FORGET

DUMP
.S
WORDS
QUIT
ABORT"
ABORT
COLD
BRANCH
?BRANCH
ATO4
EEWORD
EEMOVE
EEC!
EE!
EDP
EDELAY
FLASH
EXRAM
Seed
FORTH-83

	PROGRAMMING
	QUICK OVERVIEW
	THREE MACHINES
	REDTRIGGER
	ANDGATE1
	BOUNCELESS

	SYNTAX AND FORMATTING
	MULTIPLE STATES/MULTIPLE TRANSITIONS
	ANDGATE2
	
	
	
	TRANSITION COMPARISON

	ANDOUT
	ANDGATE3

	INTER-MACHINE COMMUNICATIONS
	STATE MEMORY
	BOUNCELESS+

	DELAYS
	BLINKGRN

	SPEED
	ZIPGRN
	REDYEL

	TRINARIES
	PROCEDURAL PROGRAMMING

